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The possibility of using the "ideal curve" method for study of the properties 
of individual gases and gas mixtures is demonstrated. 

The development of the theory of the equation of state of a real gas is often related 
to generalization of new experimental facts, including the detailed information which has 
appeared in recent years on so-called "ideal curves," which are lines on real surfaces of 
state along which conditions characteristic of an ideal gas are satisfied [1,2]. 

The ideal curves contain significant information on both the geometrical structure of 
the thermodynamic surface, and on peculiarities of a physical character -- the radial distri- 
bution function and intermolecular potential [2-4]. On the basis of principles observed in 
the behavior of certain ideal curves [5-8], methods for generalizing and predicting the prop- 
erties of various gases have been proposed. Subsequent development of this approach has 
permitted creation of an effective technique for comparison of the equation of state of gases 
and mixtures in a form which considers these principles. 

For further development, it is important to note that any state of a real gas may be 
referred to some ideal curve. This is equivalent to saying that the huge (by definition) 
manifold of ideal curves encompasses all possible states of a real gas. This can be proven 
without difficulty if we consider a one-parameter family of so-called isochoric ideal curves, 
the definition of which was introduced in [I], and may be described by the expression 

. - d  (P--Pid) = 

where Pid = RTp is the pressure of an ideal gas and n is a parameter which takes on arbitrary 
values. A special case of this family is the curve of an ideal gas P = Pid, where n takes 
on the value • From Eq. (I) and the virial equation of state it follows that as p § 0 

B 1 dB 

T -- (n + 1~ dT  (2) 

From Eq. (2) it is evident, e.g., that at n = • B = 0 and the corresponding isochoric 
curve, i.e., the ideal gas curve, commences at the Boyle temperature TB; for n = --2 B/T = 
dB/dT and the origin of the curve is the inversion temperature Tin; for n = --I dB/dT = 0, 
i.e., the origin of the curve coincides with the Joule temperature TJ. In the region of 
existence of a real gas at temperatures below TB n takes on positive values from += to mO.7 
at the triple point. Thus, the parameter n, maintaining a constant value along each ideal 
curve, uniquely defines a certain temperature on this curve upon extrapolation to the point 

p = 0. On this basis it can be concluded that over the entire range of existence of a real 
gas there are no limitations imposed on any of the variables appearing in Eq. (I), and the 
latter may be written in the form 

f(r, P, p, n ) = O ,  

i . e . ,  i t  may be s t a t e d  t h a t  t he  the rmodynamic  s u r f a c e  o f  a r e a l  gas  i s  a f a m i l y  o f  i s o c h o r i c  
i d e a l  c u r v e s .  

Analysis of experimental data on the properties of light hydrocarbons, inert gases, a 
number of Freons, and atmospheric gases has permitted two fundamental conclusions as to 
peculiarities in the behavior of the curves of Eq. (1): 

I) in the coordinates (T, p) over a wide parameter range the curves are straight lines 
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TABLE I. Coefficients ai of Eq. (6) for Mixture CH4--CF4 (x, 
molar concentration of CH4) 

X 

1,0 0,75 0,5 0,25 0,0 

1,3321603 
0,41457562 

--3,7923209 
3,2545009 

--1,5587057 
0,40065466 

--0,053677644 
0,002999345 

15,926629 
--41,007975 
--45,090779 
310,40104 

--500,73847 
384,53632 

--146,12979 
22,105769 

40,163715 
--202,87632 

412,77922 
--397,23036 

144,20723 
37,533249 

--43,969484 
9,3962177 

16,285395 
--71,250938 

123,35871 
--77,533021 
--32,016560 

70,637532 
--35,586214 

6, I081123 

18,356514 
--73,738854 

103,66162 
--1 t ,268841 
-- 120,07436 

129,74675 
--55,431860 

8,7534320 

with a common density 0o at their extension to the ~int T = 0, i.e., 

T = ~(l--p/~), 

where To is the temperature value on each of the ideal curves upon extrapolation to ~e 
point p = 0, so that the condition n = const is equivalent to the condition To = const; 

2) in the coordinates (PV, 0) over ~e same parameter range the curves are also 
strai~t lines, and their slope is determined by the value of the second virial coefficient 
at the temperature To, B(T = To): 

dPV'  -- RT~ [ B ( T = T o )  P o - - I ] .  

-'~-p)ro=r Po 

This expression can be obtained easily from ~e virial equation of state with consideration 
of the indicated peculiarities of ~e ideal curves. Omitting simple transformations, we 
write the equation of the ~ermodynamic surface having the properties indicated ~ove: 

PV = R T + R T B ( T  = To) P 
1--p/po" (3) 

As an example, we will consider ~e well-studied gas methane, using the Lennard-Jones 
potential to calculate the values B and 0o required by Eq. (3). 

The density value 0o may be found from the relationship of the slope of an ideal gas 
curve in (T, p) coordinates, represented in the form of a virial equation of state 

B e n ,  s ~ s t i t u t i n g  the  v a l u e s  of  C* and T*dB*/dT* t ~ u l a t e d  i n  [9] and c o n s i d e r i n g  the  f a c t  
t h a t  the  i d e a l  gas curve  i s  a s t r a i g h t  l i n e  i n  ~ e s e  c o o r d i n a t e s ,  we o b t a i n :  

dT 2,398 
P ~  C r=% - 2 / 3 ~ N o  3" 

C o n s i d e r i n g  t h a t  t he  L e n n a r d - J o n e s  p o t e n t i a l  i s  a model one ,  we i n t r o d u c e  the  dependence  of  
i t s  p a r a m e t e r s  upon the  q u a n t i t y  To. As a r e s u l t  o f  p r o c e s s i n g  e x p e r i m e n t a l  d a t a  on methane  
[10] the  f o l l o w i n g  e x p r e s s i o n s  a r e  o b t a i n e d  f o r  ~(To) and c (To) :  

~ (T0)= 3.757276402- 0.0269704398 [exp (--1.0i3!2395 ~ ) - - 1 ] ,  (4) 

e {To) = 1.53269493 • l02 - -  7,02553543 • I0-2~ + 2.34039536 • 

• 10-~Tg - -  2.85274502 • 10-TT~ + 1,23368679 • 10-t0T~. (5) 

~e values of the methane ideal gas curve obtained with the aid of Eqs. (4), (5) (Po = 
35.82 kmole/m 3, TB = 508.63~ agree well with those obtained directly from experimental 
data [I0,11] (35.90 kmole/m 3 and 508.53~ respectively) and s~stitution of these values 
together with the expression for the second virial coefficient of the Lennard-Jones poten- 
tial [9] in Eq. (3) leads to a description of the experimental data [I0] with a mean 6mean = 
0.07% and maximum ~max = 0.3 % error. 
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Fig. I. Histograms of deviation (%) of experimental 
values of CHa [I0,II] (a) and CFa [I0] (b) compres- 
sibility coefficients from values calculated with Eq. 
(3). 

An equation of state in the form of Eq. (3) can be produced directly from experimental 
PVT data without use of a model potential. Approximate equations obtained in this manner 
for the second virial coefficient can be written in the form 

7 

B* = ~ al0 -i, (6) 
t = 0  

where  B* = Bpo; 0 = To/TB. The c o e f f i c i e n t s  o f  Eq. (6) p r e s e n t e d  i n  Tab le  I as an example 
f o r  F reon  F-14 (Po = 27.54 kmole/m 3, TB = 520.64~ and methane  (0o = 35 .90  kmole/m 3, TB = 
508.53~ d e s c r i b e  t he  e x p e r i m e n t a l  d a t a  to  t he  a c c u r a c y  shown i n  F i g .  I .  

F i g u r e  2 p r e s e n t s  d a t a  o f  v a r i o u s  a u t h o r s  on the second  v l r i a l  c o e f f i c i e n t  o f  me thane ,  
o b t a i n e d  by the  u s u a l  methods  b a s e d  on p r o c e s s i n g  o f  PVT d a t a  f o r  the  r a r e f i e d  g a s ,  t o g e t h e r  
w i t h  the  c u r v e  o f  Eq. ( 6 ) .  I t  s h o u l d  be n o t e d  t h a t  the  method p r o p o s e d  h e r e  p r o v i d e s  much 
s m a l l e r  t o l e r a n c e  i n  t he  v a l u e s  o f  the  second  v i r l a l  c o e f f i c i e n t  as compared to  t r a d i t i o n a l  
me thods ,  s i n c e  r e l i a b l e  d a t a  o v e r  a wide d e n s i t y  i n t e r v a l  a r e  u sed .  Moreove r ,  due to  the  
p e c u l i a r i t i e s  o f  the  the rmodynamic  s u r f a c e s  men t ioned  above ,  the  v a l u e s  o f  the  second  v i r i a l  
c o e f f i c i e n t  can be d e t e r m i n e d  o v e r  a w i d e r  r ange  o f  t e m p e r a t u r e s  T = To than  by t he  c l a s s i c a l  
methods  a l o n g  i s o t h e r m s .  200 300 
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Fig. 2. Second virial coefficient 
B* = Bpo versus temperature, =K: 

I) [lO]; 2) [12]; 3) [13]; 4, 5, 6) 
data of Berne, Hoover, and Sengers 
et al., respectively, from [14]; 
7) B*(T = To), Eq. (3). 
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Fig. 3. Mixed second virial coefficient B12, 
m3/kg vs temperature T = To ~, ~ mixtures 
nC~HIo--CO2 [15]: I) x = 0.16938; 2) 0.33335; 
3) 0.49843; 4) 0.67396; 5) x = 0.82729 (where 
x is the molar fraction of nC4H1o). 

Together with indisputable advantages (quite high accuracy over a wide parameter range 
and simplicity of formulation and use), Eq. (3) has a shortcoming in that it reliably de- 
scribes only that portion of the surface of state upon which the ideal curves of Eq. (1) are 
linear. Curvature of the latter in the region of low temperatures and high densities, or 
curvature produced by the presence of a high molecular dipole moment in the material under 
study leads to a sharp reduction in the accuracy of the description of properties. 

A most important consequence of the proposed form of Eq. (3) is the capability of use 
for calculating gas mixtures. The problem of constructing an equation of state for dense 
gas mixtures, which require a large number of virial coefficients, has not yet been solved 
because of the impossibility of reliably determining the so-called cross virial coefficients 
of higher order than the second. Other theoretical methods, e.g., those based on perturba- 
tion theory, despite certain successes which have been achieved, have been used only in 
limited cases for very simple gases. The applicability of the equation of state in the form 
of Eq. (3) to description of gas mixtures is justified by the fact that the thermodynamic 
surfaces of the latter, given a constant composition, possess the same properties as the sur- 
faces of pure substances.* The function Bmix(T = To) considered here for the mixture CH4-- 
CF4 [i0] is similar in form to the function B(T = To) of the pure components (Fig. 2). Cal- 
culations of the compressibility factor for three compositions of this mixture using the co- 
efficients presented in Table ! gave the following maximum and rms errors: for the composi- 
tion 0.25 CH~, ~max = 0.8%, ~mean = 0.3%; for the composition 0.5 CH4, ~max = 0.7%, ~mean = 
0.2%; for the composition 0.75 CH4, 6max = 0.8%, ~mean = 0.2%; values of Po = 28.91, 30.77, 
32.87 kmole/m 3 and TB = 505, 493, 490~ were used. 

The presence in Eq. (3) of only the second virial coefficient and its high accuracy in 
describing experimental data permits the conclusion that the problem of its composition re- 
duces to the simple theoretical expression 

p2 ' 2 Bmi x = XlBi  ~ x2B~ ~ 2xtx2Bi2 �9 (7) 

The v a l u e s  o f  BI=(T = To) o b t a i n e d  from Eq. (7) f o r  the  m i x t u r e s  CH~-CFa and nCaHlo-CO=, 
shown in  F i g .  3, as  would  be e x p e c t e d ,  show no c o m p o s i t i o n  dependence ,  w h i l e  t he  a p p r o x i m a t e  
e q u a t i o n  f o r  t h e  m i x t u r e  CH4--CF4 

B~2 = 0 . 6 1 3 4 2 0 1 - - 1 . 8 4 9 7 9 0 8 ( 1 / 0 ) - - 0 . 7 7 6 7 5 2 7 ( I / 0 )  2 + 

4 10.981797 (1/0) 3 - -  19.6017535 (1/0) ~ -F 16.0359707 (1/0) 5 - - 6 . 4 2 2 2 8 9 7 ( I / 0 )  6 "-F 1o0194078 (1/0)L (8) 

describes the experimental data on compressibility of all three compositions with an error 

*This is also the justification for use of the thermodynamic similarity method for gas mix- 

tures. 
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not exceeding I% as a rule. It should be considered that the equations of each of the com- 
ponents produce a contribution to the error in determining data for the mixture. 

An interesting consequence of Eq. (3) becomes apparent when it is compared with theo- 
retical equations written with use of the radial distribution function 

PV = RT-F RTp ~-r  g(r, T, p) r3dr. (9) 

At the  same t ime,  Eq. (3) ,  which cons ide r ed  the dependence B(To), may be w r i t t e n  in the  form 

S__ ~ [ U(r) (l_p/po)]r3dr" (10) PV= RTq-RTp exp - -  kT 

From this we see that the peculiarities of the thermodynamic surface which were noted above 
lead to a radial distribution function of the form 

g(r, T, p)~=exp[ U(r)kT ( I - - p l p 0 ) ] .  ( l l )  

The form ob t a ined  f o r  g ( r ,  T, 0) does not  c o n t r a d i c t  the u n i v e r s a l l y  known form in which de-  
caying  o s c i l l a t i o n s  must appear .  I t  should be noted t h a t  a l l  s t u d i e s  concern ing  de t e r mina -  
t i on  of the form of g(r) concern only liquids or very dense fluids. At the same time, in 
the range of gas existence the oscfllations in g(r) need not exist, since thermal motion in 
a gas does not assume the presence of an ordered structure, as was noted in [4]. In connec- 
tion with this Eq. (11) is then fully valid. 

The presence of a simple relationship between g(r) and U(r) opens great possibilities 
for performing special calculations related to transfer properties, for calculation of higher 
virial coefficients [16], and for solving a most important applied problem-- the determina- 
tion of the true intermolecular interaction function from data on scattering and macromole- 
cular properties�9 

In the latter case, known methods of potential inversion [17,18] find direct applica- 
tion. This is true because instead of partially missing and quite inaccurate values of the 
second virial coefficient, data on any thermodynamic properties, including caloric ones and 
phase transition curves, may now be used. Use of the entire complex of thermodynamic prop- 
erties undoubtedly increases the accuracy of U(r) determination. 

In conclusion, it should be noted that introduction into the thermodynamics of real 
gases of the concept of ideal curves is most useful from both practical and theoretical 
viewpoints�9 

NOTATION 

P, pressure; T, temperature; 0, density; B and C, second and third virial coefficients, 
respectively; R, universal gas constant; ~ and g, Lennard-Jones potential parameters; r, 
intermolecular distance; g, radial distribution function; U, intermolecular interaction 
energy; N, Avogadro's number; k, Boltzmann's constant. 
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A ~THOD OF STATISTICAL MODELING TO ESTIMATE THE ERROR 

IN DETERMINING THE COEFFICIENT OF ~ISTURE DIFFUSION 

N. I. Gamayunov, R. A. Ispiryan, 
and A. A. Sheinman 

UDC 536.2.083 

A method is considered which connects errors in the measurement of moisture 
content with the determination of the diffusion coefficient. 

The majority of known methods of experimental determination of the coefficient of mois- 
ture diffusion require, during their practical implementation, creation in test special con- 
ditions such as, e.g., constant moisture content or flux of moisture on the surface, semi- 
finiteness of the medium, and uniformity of the initial distribution. In addition, as is 
mentioned in [1,2], during the solution of inverse problems insufficient attention is de- 
voted to the error estimate. Often, incorrectly, the errors of direct and inverse problems 
are taken as identical. 

Since existing methods of measurement of moisture fields give large errors, there arises 
need to work out methods of analysis of experimental data. 

The essence of the method being proposed here consists of the following. Let there 
exist a testpiece of the material in which, as a result of external action, there is created 
a one-dimensional isothermal process of moisture transfer. We assume that at two points 
with the coordinates x = 0 and x = I we know the dependence of moisture content on time u(0, 
T) = f1(T) and u(l, T) = f2(T), and also the distribution u(x, 0) = g(x), referred to a time 
instant which conditionally is taken as the zero instant. 

Usually in a real process the diffusion coefficient varies with time as a consequence 
of variation of the structure of the material. However, if we choose small time intervals 
and a thin layer I of the testpiece, then the moisture diffusion coefficient a within this 
layer can be considered as constant. 
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